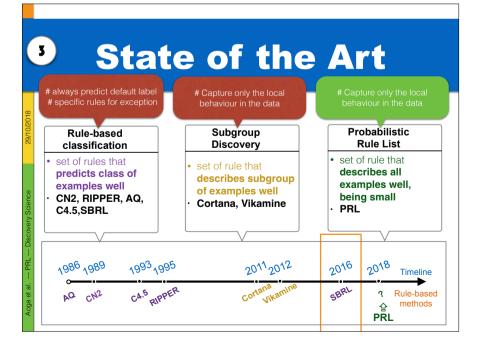
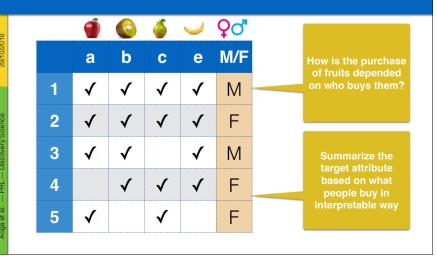
Probabilistic Rule Lists using the MDL Principle


#DS2018

John Aoga, Tias Guns, Siegfried Nijssen & Pierre Schaus


Motivation

2

	Year	Month	Day	Part of Day	Minute	Door Opended
8		October	Monday	Morning	10	Closed
29/10/2018		October	Monday			Opened
		October	Tuesday		30	
5		October	Tuesday	Can you summar	ize ⁴⁰	
		October	Wednesday		50	
		October	Wednesday		INIS 10	
Discovery Science	2018	October	Thursday	data in interpreta way?		
		October	Thursday		30	
		October	Friday		40	
		November	Monday		50	
		November	Monday	<u></u>	10	
		November	Tuesday	Afternoon	20	
		November	Tuesday	Morning	30	
		November	Wednesday	Afternoon	40	
		November	Wednesday	Morning	50	
8 I		November	Thursday	Afternoon	10	
oga et al. — PRL — Dis		November	Thursday	Morning	20	
		November	Friday	Afternoon	30	
		December	Monday	Morning	40	
		December	Monday	Afternoon	50	
		December	Tuesday	Morning	10	
		December	Tuesday	Afternoon	20	
		December	Wednesday	Morning	30	
τu υ		December	Wednesday	Afternoon	40	
00		December	Thursday	Morning	50	
~		December	Thursday	Afternoon	10	
		December	Friday	Morning	20	

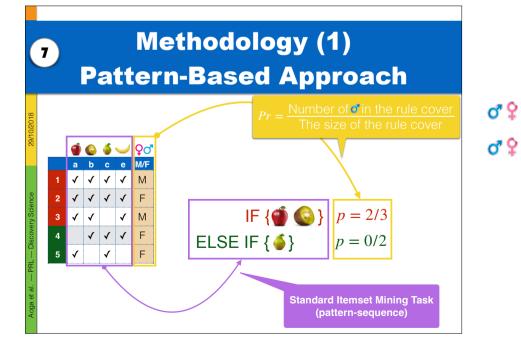
Simple Example

Problem of PRL

- Given A database of instances (observations), with for each a Boolean target attribute
- Find A Probabilistic Rule List
- Such that this Rule List when applied to the given database *describe* it well being *small* and *interpretable*

Contributions

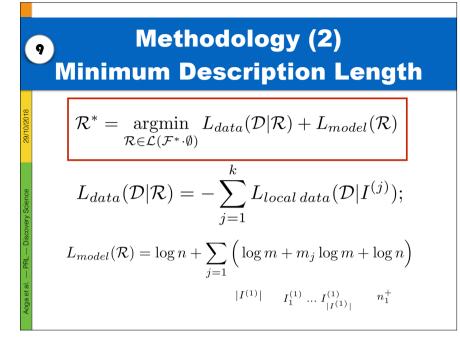
Goal: Finding Rule List which learns rules with probabilities to characterize the class distribution over the entire data and favor smaller rule lists to ease interpretation


Mew optimization criterion

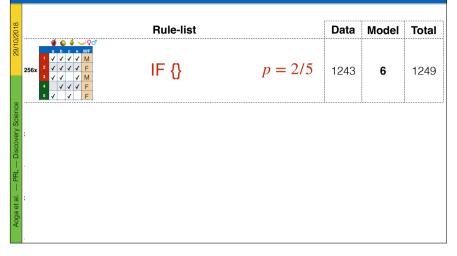
6

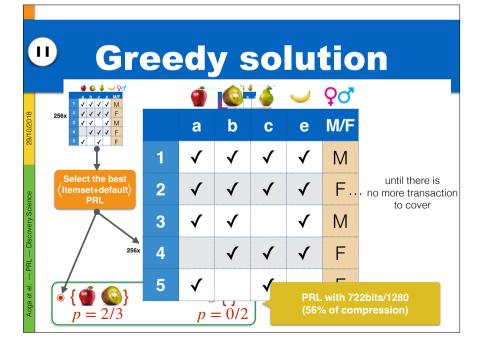
- ▶ based on the MDL principle;
- ▶ aiming to find small-and-good rule lists

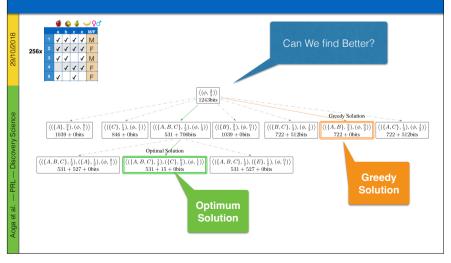
Mew search algorithm


- ▶ based on branch-and-bound search;
- ▶ aiming to find the global optimum

Methodology (2) Minimum Description Length Itemset List Rule List argmin_R score(R, F, D) Score is (based on Shannon's Noiseless Channel Coding Theorem)


- the number of bit to use each rule to encode the data (using log of probabilities)
- the number of bit to encode the rule itself

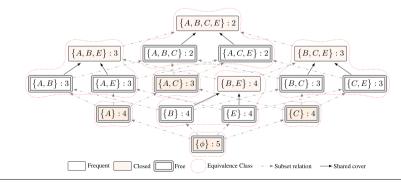


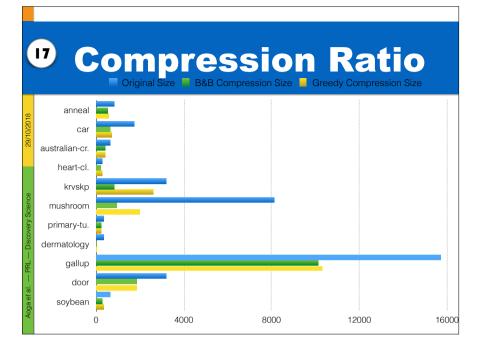

Methodology (2) Why MDL is interressing

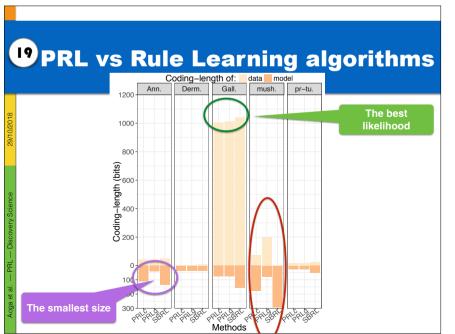
10

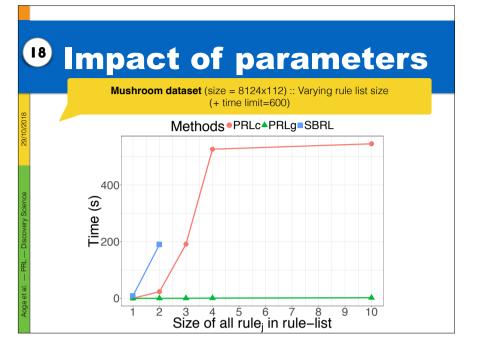
Branch-and-Bound

Algorithm 2: Branch-and-bound $(\mathcal{F}, \mathcal{D})$ **1** PQ: PriorityOueue > Partial rule lists ordered by code-length when adding default rule 2 $best \mathcal{R} \leftarrow \langle \emptyset \rangle$, $best \leftarrow L(best \mathcal{R})$ Start by default rule list 3 PQ.enqueue-with-priority($\langle \rangle, L(\langle \emptyset \rangle)$) 4 while $\mathcal{R} \leftarrow PQ.dequeue()$ do Add iteratively new rule in the for each $I \in \mathcal{F} \setminus \mathcal{R}$ do 5 rule List $\mathcal{R}' \leftarrow \langle \mathcal{R}, I \rangle$ 6 update the best if the new rule + if $L(\langle \mathcal{R}', \emptyset \rangle) < best$ then 7 default has minimum length than $best \mathcal{R} = \langle \mathcal{R}', \emptyset \rangle, \ best \leftarrow L(best \mathcal{R})$ 8 the curent best if *lower-bound*(\mathcal{R}') < *best* then 9 PQ.enqueue-with-priority $(\mathcal{R}', L(\langle \mathcal{R}', \emptyset \rangle))$ 11 return $best \mathcal{R}$ Compute the bound and store expandable rule-list in the PQ

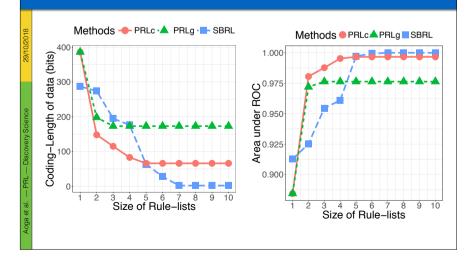


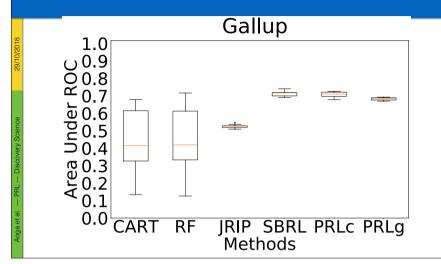

Lower bound computation

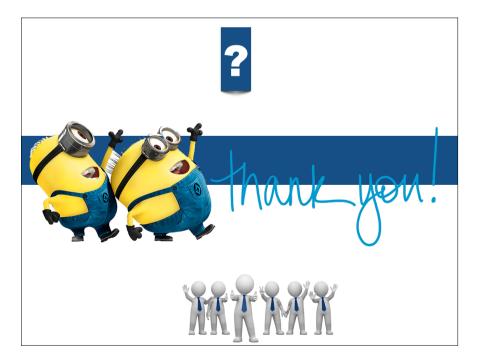

- When we have a partial rule list, can we remove some possibilities?
- A good lower-bound is difficult to compute since there is an exponential number of rules that can be added to the list
- In the perfect case,
 - any expansion has to be greater than or equal in size to 1,
 - and any expansion will achieve at best a data compression of 0


Implementation Details

- Set representation as a Bitvector + Bitwise operation
- Only find Rule in Free-sets (equivalent classes)







²⁰ PRL vs Rule Learning algorithms

Prediction power of PRL

Conclusion

22)

- We propose a New Descriptive method called Probabilistic Rule List
 - This Rule List is designed to be small and characterize well the target data
 - We found using a new optimization criterion based on MDL principle
 - We also designed a branch-and-bound method using Best First Search strategy